Long term critical infrastructure planning: the perspective of EDF INSeapTION Global User Workshop June 9, 2020

Paul-Antoine Michelangeli EDF R&D – EDF Lab Paris Saclay

Climate and EDF activities

Climate change may have many impacts on EDF activities

Climate and EDF activities

Climate change may have many impacts on EDF activities

At different time scales: decadal, mid/end of 21st century, more...

Changes in air temperature, precipitations, river flows, water temperature, sea level...

wind power

Climate and EDF activities

Climate change may have many impacts on EDF activities

At different time scales: decadal, mid/end of 21st century, more...

Changes in air temperature, precipitations, river flows, water temperature, sea level...

Climate-related risks and opportunities

Source : EC Guidelines on reporting climate-related information, June 2019

EDF internal climate service

- Support every EDF entities in addressing the question of climate change on their activities
 Resilience of their assets/activities, adaptation
- Insure consistency between impact studies: data, scenarios, methods

Sizing seaside nuclear plants protection 1st term: 10 years

Regulatory requirements for the protection against submersion

See Nuclear Safety Authority (ASN) flood guide

M Margin calculation

- Between two inspections, 10 years
- Sea level rise has to be computed locally
- M is based on linear regression computed since the beginning of 20th century
 - Y = a X + b with a in mm/y
 - *M* between two inspections is: *M* = 2 × *a* × 10 + Δ where Δ is the maximum oscillation of mean sea level around its regression (less than 10 cm)

And for longer term...

Sizing of long-term seaside EPR protections → sea level heights by 2100

- IPCC AR5:
 - Global: « …likely ranges are 0.26 to 0.55 m (RCP2.6), 0.32 to 0.63 m (RCP4.5), 0.33 to 0.63 m (RCP6.0) and 0.45 to 0.82 m (RCP8.5) (medium confidence) (Table TS.1, Figure TS.21, Technical Summary). For RCP8.5 the range at 2100 is 0.52 to 0.98 m »
 - French coasts (fig. TS.23, Technical Summary)
 - The highest scenario (d, RCP2.6) is then \approx +70 cm (or +60 cm) around 2081-2100,
 - The lowest scenario (a, RCP8.5) should lead to \approx +30 cm.

➔ To address the question of sizing by 2100 : pick the most unfavorable IPCC AR5 scenario, that is the most conservative

Optimization of NPP protection structures by 2100 is a very difficult task due to lots of uncertainties

- →Models/scenarios
- →Local dynamics of the sea level rise
- →Antarctic/Arctic ice sheet melting and dynamics

Conclusion

- EDF is impacted by climate change in each and every of its activities
- The question of climate change is seriously addressed by the Group for
 - Mitigation / Adaptation / Transformation
 - Responsibility as a public service provider of electricity: a « first necessity good »
- EDF has set up an internal Climate Service to support its entities: data, expertise methods related to climate dynamics and climate change
- Sea Level Rise is taken into account at several time scales for NPP protection sizing:
 - Decadal: linear regression from of observations (centennial series)
 - By 2100: numbers from « worst » AR5 scenario

BUT

- a lot of uncertainties: models, scenarios, Antarctic and Arctic ice sheet melting and dynamics...
- SLR has to be studied at a very local scale

• Yes Coastal Climate services are of prime interest:

- Data
- Understanding coastal dynamics under CC (SLR, water temp., submersions, ...)
- Explaining uncertainties

Thank You